行业动态

浅析磁混凝沉淀技术处理污水原理

2018-06-04 08:28:39 小沐管家 0

水是生命之源,它孕育和滋养了地球上的一切生命,并从各个方面为人类社会服务。水资源的短缺和水环境污染已经严重威胁着人类的健康和安全,制约着经济的进一步发展。水资源保护和水污染防治已成为人类能否实施可持续发展战略的关键问题,引起全世界的普遍关注,污水处理技术得到不断发展。


现代污水处理技术,按原理可分为物理处理法、化学处理法和生物化学处理法3 大类。物理处理法是利用物理作用分离污水中呈悬浮固体状态的污染物质,方法有筛滤法、沉淀法、上浮法、气浮法、过滤法和反渗透法等。化学处理法是利用化学反应的作用,分离回收污水中处于各种形态的污染物质,包括悬浮的、溶解的和胶体的。主要方法有中和、混凝、电解、氧化还原、汽提、萃取、吸附、离子交换和电渗析等。生物化学处理法是利用微生物的代谢作用,使污水中呈溶解、胶体状态的有机污染物转化为稳定的无害物质。主要方法可分为2 大类,即利用好氧微生物作用的好氧法和利用厌氧微生物作用的厌氧法。


纵观以上处理方法可见,污水处理的实质是对水中污染物进行分离和转化,而转化的最终产物大多需经分离予以除去,所以,分离是污水处理过程非常重要的一环,直接影响到处理的效果和成本,显然,强化分离过程对污水处理技术水平的提高具有重要意义。借助外加磁粉加强絮凝效果,提高沉淀效率,无疑是强化分离过程的有效手段。因此,笔者对磁性絮团的形成机理和形成规律进行了初步探讨,通过试验,取得了磁混凝沉淀工艺的最佳参数,从而为磁混凝沉淀技术在水处理中的应用创造了条件。


1
磁混凝沉淀技术简介


所谓磁混凝沉淀技术就是在普通的混凝沉淀工艺中同步加入磁粉,使之与污染物絮凝结合成一体,以加强混凝、絮凝的效果,使生成的絮体密度更大、更结实,从而达到高速沉降的目的。磁粉可以通过磁鼓回收循环使用。


整个工艺的停留时间很短,因此对包括TP 在内的大部分污染物,出现反溶解过程的机率非常小,另外系统中投加的磁粉和絮凝剂对细菌、病毒、油及多种微小粒子都有很好的吸附作用,因此对该类污染物的去除效果比传统工艺要好。同时由于其高速沉淀的性能,使其与传统工艺相比,具有速度快、效率高、占地面积小、投资小等诸多优点。


以前,磁混凝沉淀技术在水处理工程中实际应用极少,原因是磁粉的回收问题一直没有得到很好地解决。现在这一技术难题已被成功解决,磁粉回收率可达99 %以上,这样,磁混凝沉淀工艺的技术优势和经济优势就得到了充分体现,在国内外得到了越来越广泛地应用。目前,美国有15 000 t/d 的市政污水处理项目采用了磁混凝沉淀技术。我国在城市污水处理、中水回用、自来水处理、河道水处理、高磷废水处理、造纸废水处理、油田废水处理等方面对该技术的中试已经完成,均取得了较好的结果。


2
磁絮凝作用机理初探


根据混凝机理,加入混凝剂主要是通过改变胶体或悬浮颗粒的表面性质,使胶体或絮团的吸引能大于排斥能而促进凝聚,而加入絮凝剂的作用主要是通过架桥作用使颗粒聚集增大的。


陈文松在他的论文中对磁絮凝的作用机理进行了阐述,他认为,含磁絮团的形成与不含磁絮团的形成过程一样,都是在混凝剂的作用下完成的。对磁粉的ζ电位的测试结果表明,磁粉表面呈负电性(ζ=-10.5 mV)。由此可以推断,含磁絮团的形成经历如下:首先,混凝剂水解产生的正离子由于吸附电中和作用聚集于带负电荷的胶体颗粒和磁粉颗粒周围;然后,由于静电斥力的消失,胶体颗粒与磁粉颗粒之间以及它们自身之间通过范得华引力长大;最后,通过絮凝剂的架桥作用,进一步将凝聚体絮凝成大絮团而沉淀。由此可见,有磁粉参与的磁絮凝反应与没有磁粉参与的絮凝反应没有本质区别,磁粉与其他的细微悬浮颗粒一样,混凝剂的作用机理对它同样起作用,已有的混凝理论对磁絮凝反应同样具有指导意义,所有的强化混凝措施都将促进磁絮凝反应的进行。


3
磁粉的回收


传统的磁粉回收装置有格栅型、鼓型、带型等,最常用的为转鼓式。它的主要部分由固定的磁系和在磁系外面转动的非磁性圆筒构成。磁系的磁极极性沿圆周方向交替排列,沿轴向极性单一,磁系包角106~135 °[3],圆桶是用来运载黏附在其表面上的磁性物质,其工作原理如图1 所示。


图1 转鼓式磁粉回收装置工作原理图


含有磁粉和污泥的污水从转鼓的一端进入分离装置,固定磁极将磁性颗粒吸出并附着在滚筒表面,随着滚筒的转动,被带至磁系边缘的低磁区,并从磁性物质出口卸下,非磁性物质则在重力的作用下,沿分离槽流至非磁性物质出口排出,完成磁性物质和非磁性物质的分离过程。


4
磁混凝沉淀技术的工艺流程及工艺参数


某10 000 t/d 的磁混凝沉淀试验装置在污水处理厂进行了为期2 个月的试验,取得了良好的效果。第2 年,运用该项技术的5 万t/d 的市政污水处理项目在该厂建成并投入运行。笔者将以该工程为例,介绍磁混凝沉淀技术的工艺流程及最佳工艺参数的确定。


4. 1 工艺流程


磁混凝沉淀工艺流程见图2。


图2 磁混凝沉淀工艺流程图


污水经格栅初步分离后,进入处理装置的1 级混合池,同时向1 级混合池投加混凝剂PAC,二者充分混合后进入2 级混合池,在此与回收的磁粉和回流污泥混合絮凝,然后进入3 级混合池,与在此加入的助凝剂PAM 进行反应,生成较大的絮体颗粒,最后进入沉淀池快速沉降,出水进入下一道处理工序。


经沉淀池沉淀下来的污泥,部分经污泥回流泵回流到2 级混合池继续参与反应,另一部分则经高剪切机进行污泥剥离,并进入磁鼓进行磁粉回收,回收的磁粉再次进入2 级混合池继续参与反应,剩余污泥则进入后续污泥处理系统。加药间调配好的PAC 和PAM 溶液由加药泵输送至各加药点。PAC 投加到1 级混合池。PAM 投加到3 级混合池。


4. 2 最佳工艺参数的确定


在污水处理中,COD、总磷、浊度是几项最常用的指标,下面我们通过对这几项指标的测定,分析磁混凝沉淀工艺的最佳运行参数。试验中,源水为清河污水处理厂总进水。现将基本工艺条件及参数列于表1。


表1 基本工艺条件及参数

沐歌环保

4. 2. 1加料顺序对系统运行的影响


保持其他工况不变分别试验以下3 种加料顺序对磁絮凝反应的影响。①先加PAC,再加入磁粉,然后加PAM;②同时加入磁粉和PAC,然后加PAM;③先加PAC,再加PAM,最后加磁粉。其中每种物料的投加间隔时间为2 min。针对以上3 种加料顺序分别测试上清液的浊度,结果列于表2。



表2 上清液测试结果


从以上数据中可以看出,前两种加料顺序的效果基本相同,第3 种显然不可取。究其原因,应该是磁粉加入太晚,赶不上参加混凝反应,未能形成磁性絮团。


4. 2. 2搅拌条件对系统运行的影响


保持其他参数不变,分别调节3 个混合池中搅拌机的运行频率,记录下各种组合下叶轮的转数和相应的污水水质指标,得出如下结论:在1 级混合池和2 级混合池需要快速搅拌,以增加混凝剂、磁粉与污物的碰撞机会,但是,搅拌速度并非越快越好,当搅拌速度达到500 r/min 时,与250 r/min 的效果相差不大,因此,在1 级和2 级混合池宜采用250 r/min 的搅拌速度。在3 级混合池,宜采用较慢的搅拌速度,以免将生成的矾花打碎。该工艺条件下推荐80 r/min 的搅拌速度。


4. 2. 3混凝剂投加量对系统运行的影响


保持其他参数不变,将PAM 投加质量浓度恒定,调节PAC 的投加量(以Al2O3计),分别测试各种加药量下的COD、总磷及浊度指标,并计算出各项污染物的去除率,将试验结果绘于图3 中。


从图3 中可以看出,系统对COD 的去除率保持在75 %以上,当加药量在25~30 mg/L 之间时,COD 的去除率在85 %左右,随着PAC 投加质量浓度的提高,COD 去除率没有明显提高。


沐歌环保

图3 COD、总磷及浊度去除率随PAC 投加量的变化曲线


当PAC 投加量在30 mg/L 以内时,系统对总磷的去除率随着投加量的增加有显著提高,去除率可以达到97 %,当投药量超过30 mg/L 后,总磷去除率仍可随加药量的增加而提高,但趋势放缓,维持在98 %~99 %之间,最高达99.3 %。


系统对浊度的去除率基本都可以维持在95 %以上,当投药量在25 mg/L 以内时,随着投药量的增加,浊度的去除率有明显提高,可以达到99 %,当投药量继续增大,浊度去除率提高不明显。


综上,在PAM 投加质量浓度恒定的条件下,当PAC的投加质量浓度(以Al2O3计)在25~30 mg/L 之间时,各项污染物指标都有较好的降低,随着PAC 投加质量浓度的继续增大,各项污染物去除率均没有明显提高,因此,最佳的PAC 投加质量浓度为25~30 mg/L,此时,COD、总磷、浊度的去除率分别为85%、97%、99%左右。